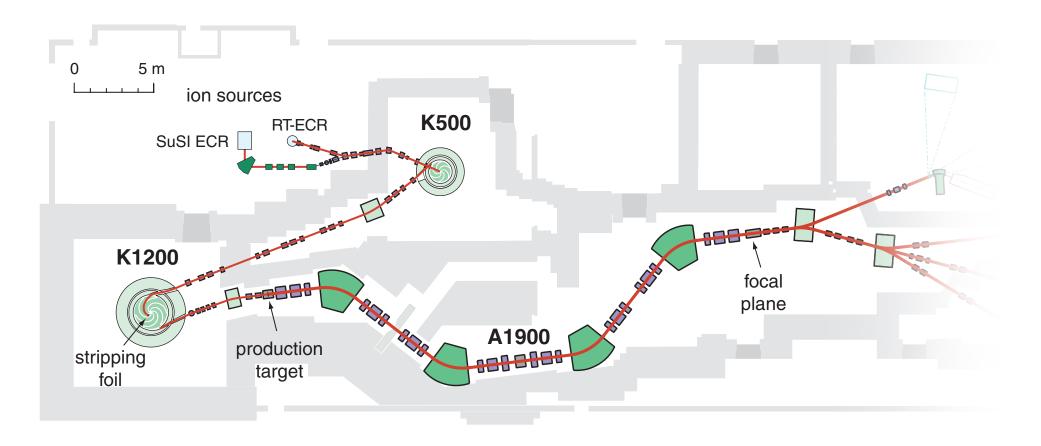


Facility Overview and Future National Superconducting Cyclotron Laboratory at Michigan State University



National Superconducting Cyclotron Laboratory

- Located at Michigan State University in East Lansing, Michigan, USA
- National user facility for rare isotope research and education in nuclear science, astro-nuclear physics, accelerator physics, and societal applications
- One of the three nuclear-science flagship facilities in the US: RHIC at BNL, CEBAF at JLAB, NSCL at MSU
- Largest university-based nuclear physics laboratory in the United States:
 10% of U.S. nuclear science Ph.D.s
- Over 600 employees (NSCL+FRIB), incl. 110 graduate students, and 47 faculty user group with 1300+ members
- Graduate program in nuclear physics ranked 1st [U.S. News and World Report]
- NSCL provides accelerated beams of heavy ions from oxygen to uranium, including rare isotope beams
- Michigan State University has been selected to establish FRIB, the Facility for Rare Isotope Beams

Coupled Cyclotron Facility at NSCL

2 ECR ion sources

2 coupled cyclotrons: K500 + K1200 primary beams: oxygen to uranium

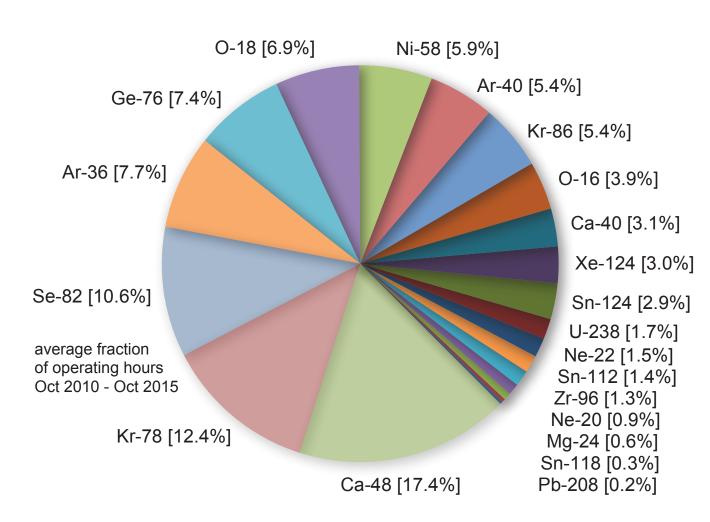
K500: 8 - 14 MeV/u, 2-8 eμA

K1200: 100 - 170 MeV/u, up to 2 kW

A1900 fragment separator to produce rare isotope beams by projectile fragmentation

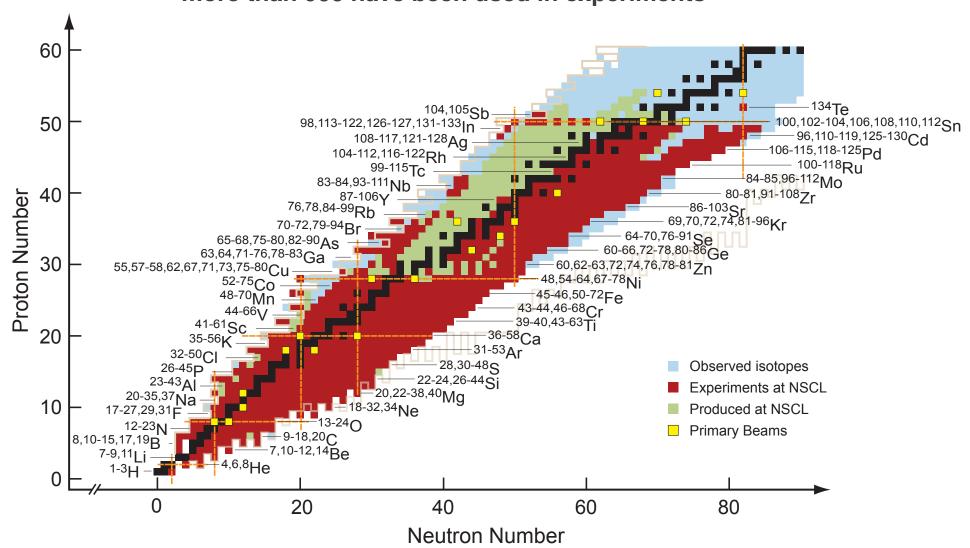
NSCL Primary Beam List

Isotope	Energy [MeV/u]	Intensity [pnA]	Isotope	Energy [MeV/u]	Intensity [pnA]
¹⁶ O	150	175	⁸² Se	140	35
¹⁸ O	120	150	⁷⁸ Kr	150	25
²⁰ Ne	170	80	⁸⁶ Kr	100	15
²² Ne	120	80	⁸⁶ Kr	140	25
²² Ne	150	100	⁹⁶ Zr	120	1.5
²⁴ Mg	170	60	¹¹² Sn	120	4
³⁶ Ar	150	75	¹¹⁸ Sn	120	1.5
⁴⁰ Ar	140	75	¹²⁴ Sn	120	1.5
⁴⁰ Ca	140	50	¹²⁴ Xe	140	10
⁴⁸ Ca	90	15	¹³⁶ Xe	120	2
⁴⁸ Ca	140	80	²⁰⁸ Pb	85	1.5
⁵⁸ Ni	160	20	²⁰⁹ Bi	80	1
⁶⁴ Ni	140	7	²³⁸ U	45	0.1
⁷⁶ Ge	130	25	²³⁸ U	80	0.2

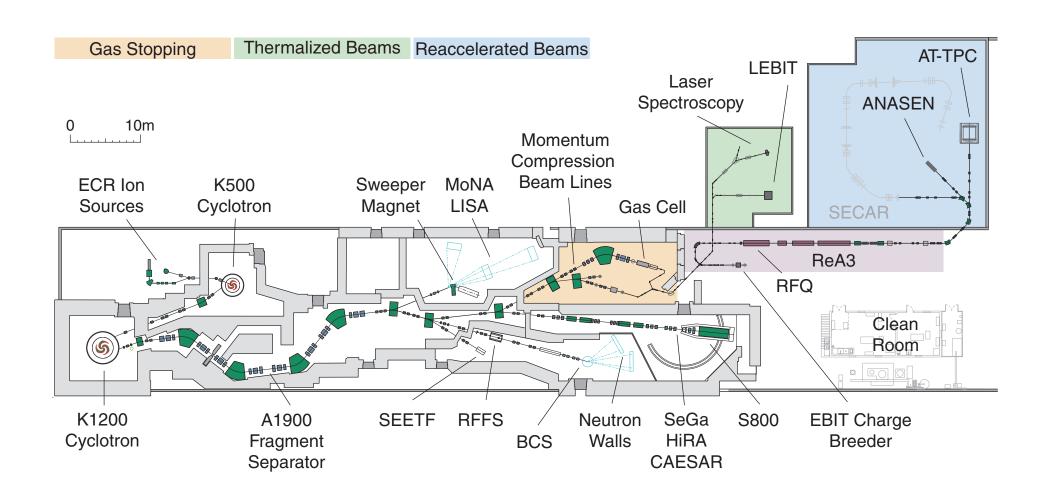

Beam list intensities are typical intensities for experiment planning purposes and are maintainable for extended time periods.

Primary Beam Statistics

CCF Primary Beam Isotope Statistics


Coupled Cyclotron Facility (CCF) delivers a different primary beam every 5 to 7 days, typically 30 beam changes per year.

The development of new primary beams (isotope and energy) is driven by user demand.



Rare Isotope Beams produced at NSCL

more than 1000 RIBs have been produced (2001-2018) more than 900 have been used in experiments

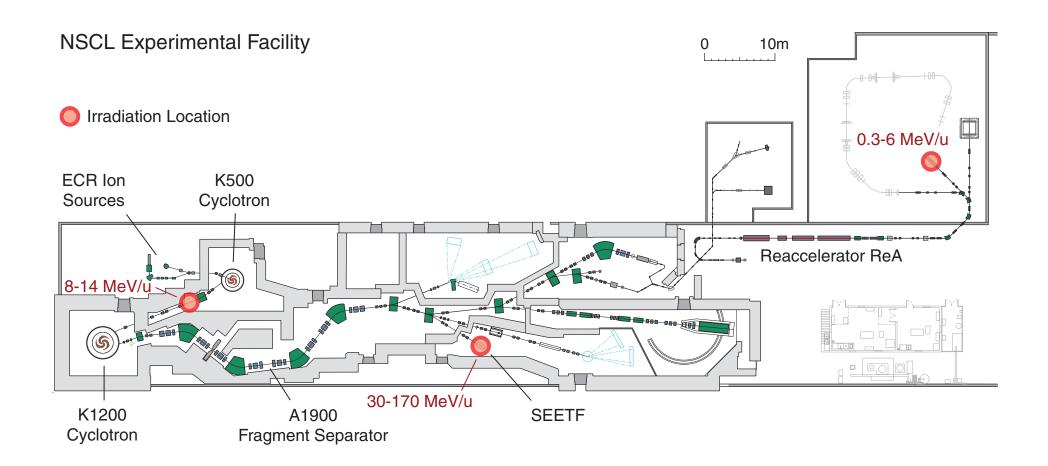

NSCL's Experimental Facility Plan

CCF Operations Statistics

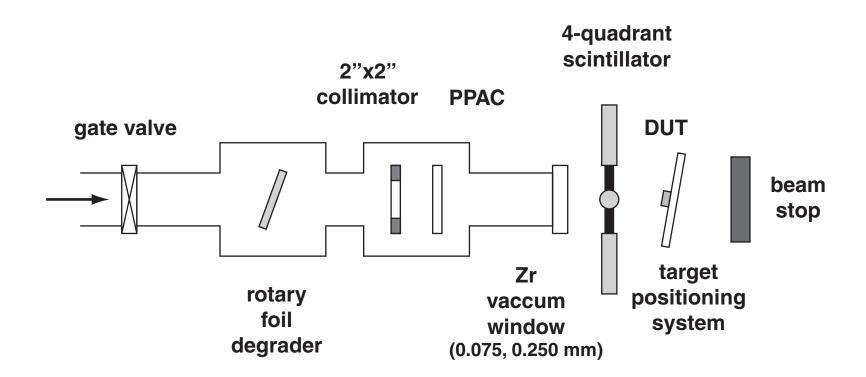
NSCL science operations is funded by National Science Foundation through 5-year cooperative agreement FY17 – FY21.

NSCL operations hours: typically: 4500 hours/year up to 6000 hours/year possible

During scheduled facility operations NSCL operates on a 24/7 schedule.

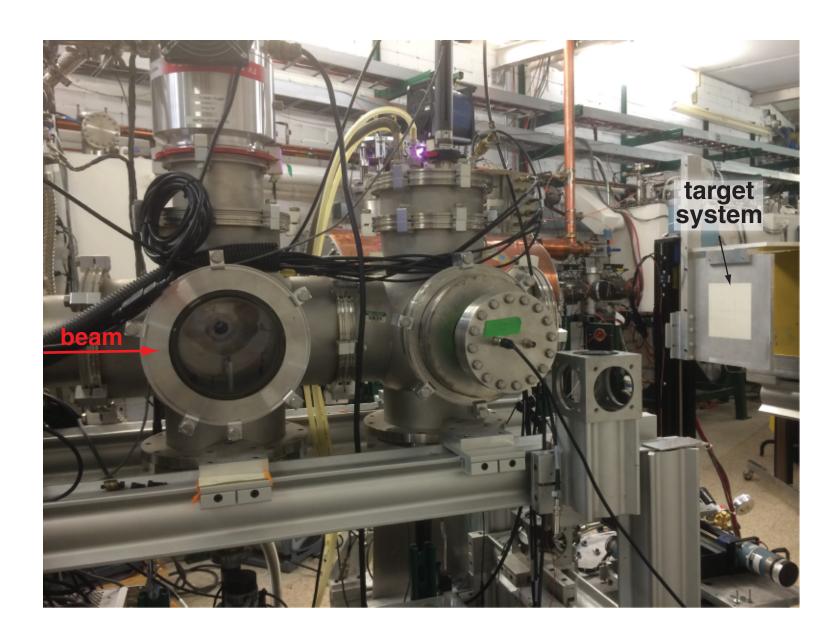

Facility availability of more than 90% allows for reliable schedule and high user satisfaction

NSCL operations is certified according to ISO 9001, ISO14001, and ISO 18001


Up to 500 hours/year are available for SEE testing

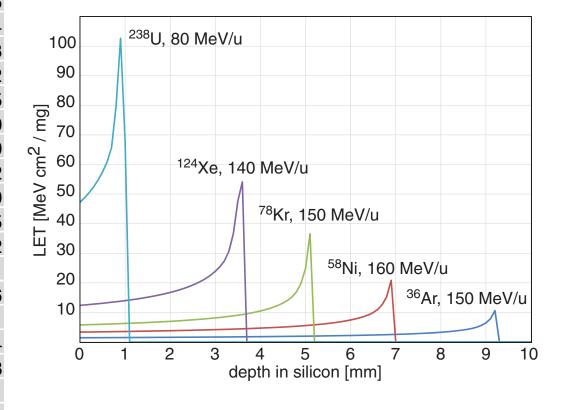
Irradiation Stations

Schematic Layout of the SEETF



rotary degrader:

Al plate (100x100 mm², 0.1 - 2 mm thick), quick adjustment of energy, controlled by user


SEE Test Facility

Beams available at the SEETF

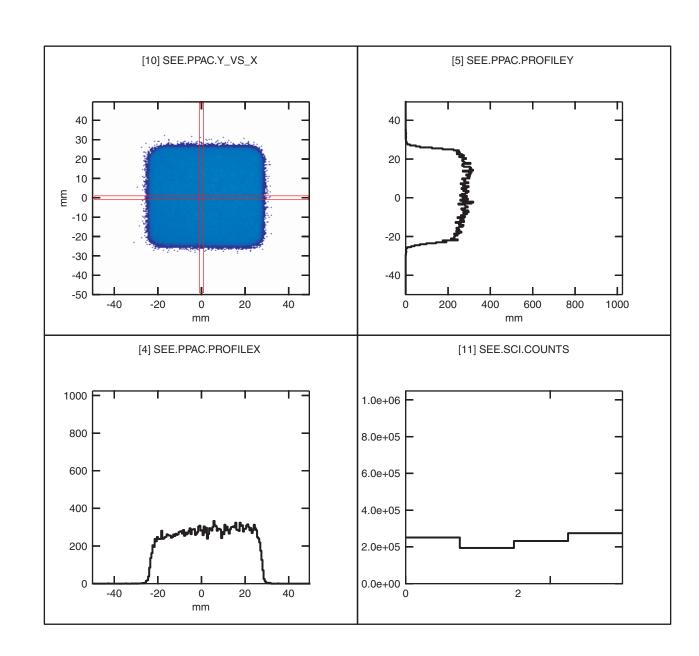
		@100mm	LET(Si)	
	Energy	air	_	range(Si)
Isotope	[MeV/u]	[MeV/u]	cm2/mg]	[mm]
160	150	149	0.3	21.1
180	120	119	0.3	16.1
20Ne	170	169	0.4	21.0
22Ne	150	149	0.4	18.6
24Mg	170	169	0.6	17.4
36Ar	150	148	1.4	9.3
40Ar	140	138	1.5	9.2
40Ca	140	138	1.9	7.5
48Ca	140	138	1.9	9.0
58Ni	160	157	3.3	7.0
64Ni	140	137	3.7	6.2
76Ge	130	127	5.0	5.0
82Se	140	137	5.4	5.5
78Kr	150	147	5.8	5.2
86Kr	140	137	6.0	5.1
96Zr	120	116	8.2	3.6
92Mo	120	116	9.1	3.1
100Mo	120	116	9.1	3.4
112Sn	120	115	12.7	2.8
124Sn	120	115	12.7	3.1
124Xe	140	135	13.3	3.5
136Xe	120	115	14.6	3.0
208Pb	85	77	37.9	1.3
209Bi	80	72	40.0	1.2
238U	80	71	47.2	1.1

Beam Spot Homogenity

ion beam: ⁷⁸Kr, 123 MeV/u

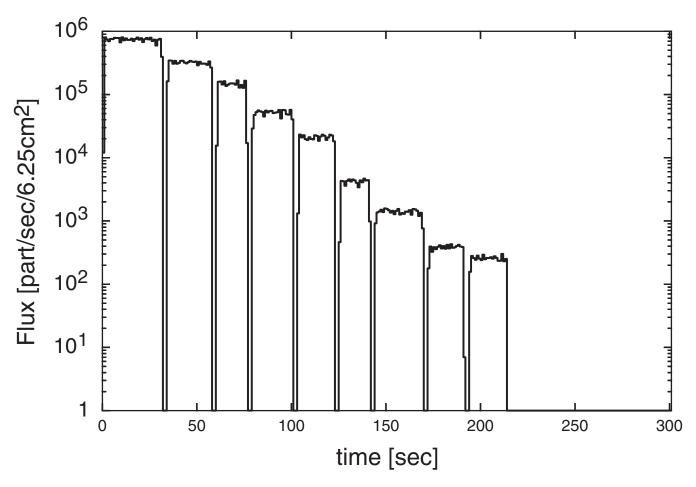
aperture inserted

beam spot characteristics:


beam spot size: 50 x 50 mm²

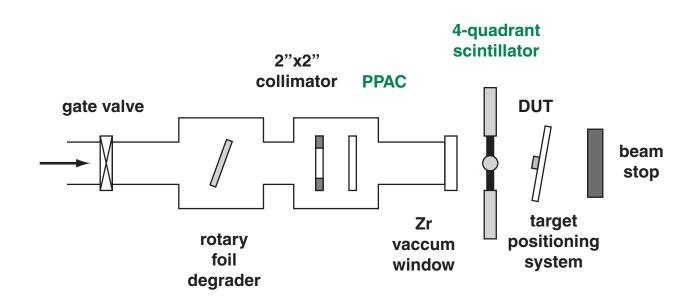
beam spot homogeneity:

- > 50% (specification)
- > 85% (typical)


isotopic purity:

> 99%

Beam Flux Adjustments


Flux adjustments with attenuator grids in K500 cyclotron injection line

adjustments in steps of factor of 3 from 1 to 10⁶, fine adjustments with variable slits possible within 30 seconds

Beam Diagnostic and Dosimetry

PPAC (parallel plate avalanche counter)

2-dim position resolution: 1mm

active area: 100x100 mm²

max counting rate: 10 kHz

max flux: 4 · 10² cm⁻² s⁻¹

equivalent thickness: 5 mg/cm2 Al

detector rectractable

Four-quadrant scintillator

4 quadrants

active area: 100x100 mm²

max counting rate: 1 MHz per quadrant

max flux: 1.5 · 10⁵ cm⁻² s⁻¹

thickness: 0.25 mm BC-400

detector mounted in air, non-retractable

SEE Test Facility Control

SEETF can be controlled from any user control area:

System controls program (Windows based):

- target positiong
- SEETF degrader
- start/stop of irradiation runs

Data acquisition system (Linux based):

- control of beam monitoring equipment and dosimetry
- storage of facility data

Beam control (flux, uniformity, tuning):

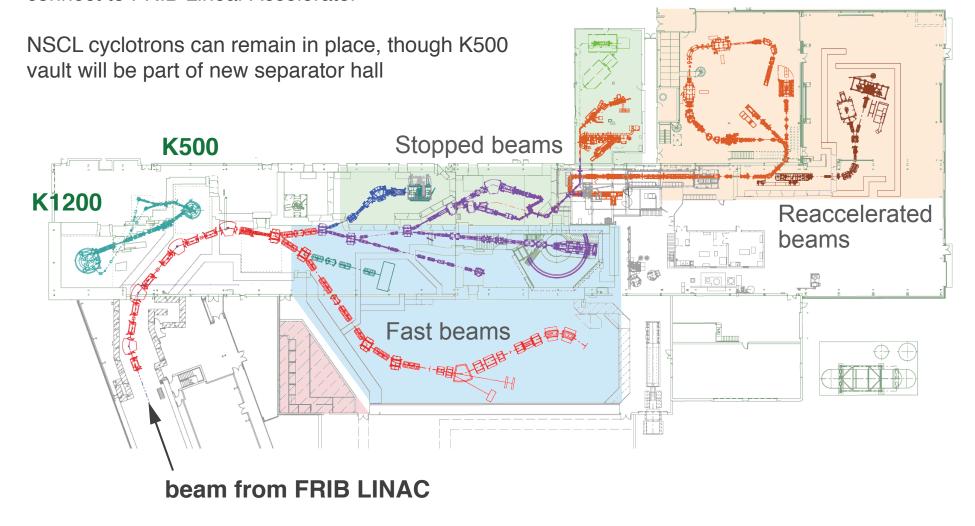
- exercised by accelerator operators
- communication by phone

Facility for Rare Isotope Beams

A DOE National User Facility, funded by U.S. Department of Energy Office of Science (DOE-SC), Michigan State University and the State of Michigan

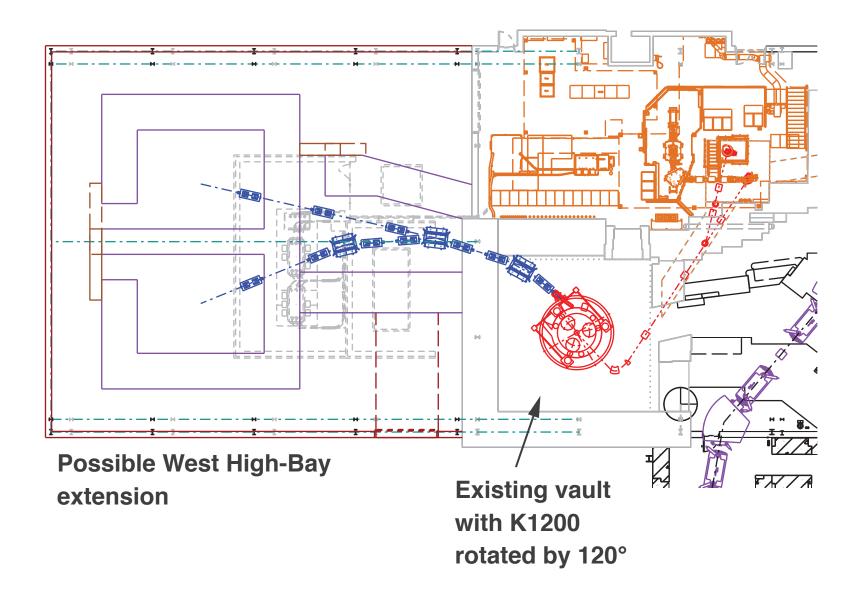
Replaces the NSCL cyclotrons with a 400 kW superconducting RF linear accelerator for all ions up to uranium

Planned completion date is June 2022, the project is managed to an early completion in 2021


Experiments with fast, stopped, Reaccelerator and reaccelerated beams Ion source 400 kW superconducting RF linear accelerator Rare isotope production area and isotope harvesting

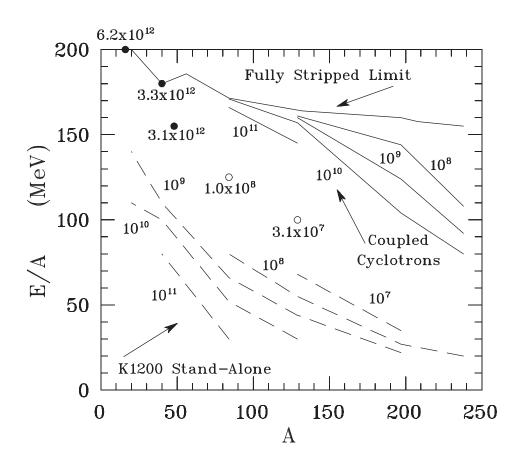
Future FRIB Experimental Facility

FRIB will reuse NSCL Experimental Facility


Reconfigured Fragment Separator beam line will connect to FRIB Linear Accelerator

Potential Future Use of K1200 cyclotron

K1200 cyclotron could be disassembled, refurbished, reassembled rotated by 120° pointing toward a new experimental area, and again operated in a standalone mode



K1200 Cyclotron Standalone Operations

Operating Diagram for K1200 Standalone

compared with Coupled Cyclotron System K1200 can provide ions from hydrogen to uranium including cocktail beams

Selected K1200 Standalone Beams April 1998

E (MeV/A)	I (pnA)	I (part/sec)
200	2	1.3E+10
150	10	6.3E+10
200	0.1	6.3E+08
125	0.3	1.9E+09
+ 170	0.08	5.0E+08
150	2.2	1.4E+10
180	0.003	1.9E+07
90	0.35	2.2E+09
105	0.1	6.3E+08
100	0.02	1.3E+08
120	0.0002	1.3E+06
0+ 60	0.1	6.3E+08
2+ 70	0.002	1.3E+07
2+ 50	0.0017	1.1E+07
1+ 59	0.0002	1.3E+06
+ 20	0.04	2.5E+08
+ 25	0.0004	2.5E+06
	200 150 200 125 + 170 150 180 90 105 - 100 120 0+ 60 2+ 70 2+ 50 1+ 59 + 20	200 2 150 10 200 0.1 125 0.3 170 0.08 150 2.2 180 0.003 90 0.35 105 0.1 100 0.02 120 0.0002 0+ 60 0.1 2+ 70 0.002 0+ 50 0.0017 1+ 59 0.0002 1+ 20 0.04

Summary

NSCL Coupled Cyclotron Facility

NSCL science operations is funded until FY21 Facility will transition to FRIB operations Until then, up to 500 hours/year available for SEE testing

Potential future use of K1200 cyclotron

K1200 cyclotron could be used in standalone mode for future SEE testing
K1200 can provide ions from hydrogen to uranium light ions up to 200 MeV/u, uranium up to 25 MeV/u